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Viscous hydrodynamics

relativistic Navier-Stok es hydro: small corrections linear in gradients

2
TNS - Tideal+ (r u +r u é @U)+ @U
n
Nns = Nigea gp 7T
where u u g ,r = @

shea and bulk viscosities, heat conductivit y

two problems:

parabolic equations ! acausal muller (76), Israel & Stewart (79) ...

Instabilities Hiscock & Lindblom, PRD31, 725 (1985) ...
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Causal viscous hydro

Meuller, Israel & Stewart...

T + , N = -

et+p

bulk pressure , shea stress heat ow g treated as independent
dynamical quantities that relax to their Navier-Stokes value on time scales

(e;sn), (e;n), q(e;n) - corresponds to keeping not only rst but (certain)
second derivatives.

Entropy four- o w including terms second order in dissipative uxes:

_ 2 U
S = SU"'TqW 0 199 + 2 >T
o9 . 19
T T

Require non-decrease of entropy:

0O @S = X+gX + X
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Which terms to keep?

1 |
Muronga; Romatschke: u @ = = 2rhy!
(u + U )Ju @u
1 2
_ In —-= +
> u @In T @u

P. Huovinen@BNL, April 22, 2008



Which terms to keep?
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Song& Heinz; Israel & Stewart : u @
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Which terms to keep?
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Potentlal caveat

Whereas Navier-Stok es is an expansion in =R (keepsonly rst derivatives),
Israel-Stewart hydro is NOT a controlled approximation (retains certain
second derivatives). For example in kinetic theory, it corresponds to Grad's

14-moment approximation
f(x;p) [1+C pple PUIT
while NS comes from the Chapman-Enskog expansion in small gradients

E@f +" prf=C[f] , f=fo+ f1+ 2fo+ :::

If relaxation e ects important, NS and IS are di erent

) control against a nonequilibrium theory is crucial
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Covariant transport

Boltzmann ..., Israel, Stewart, de Groot, ... Pang, Zhang, Gyulassy DM, Vance, Csizmadia, Pratt, Cheng, Xu,
Greiner ...

Covariant, causal, nonequil. approach - formulated in terms of local rates.

dN - n2(x
o Z(X) S(:ja;[].t)e(r Ing — Vre| ( )

This theory has a hydrodynamic limit (i.e., it equilibrates) Boltzmann

Parameter controls transport coe cients and relaxation:

T
0:8— = 1.2

tr

solvable numerically: HERE, utilize MPC algorithm bpwm, NPA 697 (02)
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In transport =s T 1= T2

e.g., for 50mb ( + 14 mb)

YI) 2=3

40 20 [ .
0:1fm 1 3fm

) =s= const needsgrowing ( )/ 1=T?/ 273

. . 2 4
in perturbative QCD: ?Sln—SzD— $’—2|n512
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Viscous hydro vs transport

We solve the full Israel-Stewart-Muronga equations, including vorticit y terms
from kinetic theory, in a 2+1D boost-invariant scenalio. Shear stress only.

Mimic a known reliable transport model:

masslessBoltzmann particles ) = 3P
only 2$ 2 processes i.e. conserved particle number
= 4T=(5 )

either = const. = 47mb ( y = 14 mb)  the simplest in transport
or / 7 closeto =s= 1=(4 )

Our \RHIC-lik e" initialization:
o= 06fm/c
b= 8 fm
To = 385MeV and dN=d j,-g = 1000
freeze-out at constant n = 0:365fm 3
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Pressure evolution In the core

T and T4% averaged over the core of the system, r < 1 fm:

=s 1=(4 ) (| )

]_O %l I I | I I I | I I I | I I |E
0 :_ —— Transp. T**-
. e = — Hydro. T** 3
E ) - |
< PE E
— : ]
v L F ]
S 107 ¢ =
T y C ]
10~ & — Transp. T*/10 =

10_4 l l l | l l l | l l l | l l l
0 2 4 6 8

T (fm/c)

remarkable similarity!
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Viscous hydro elliptic ow

TW O e ects: - dissipative corrections to hydro elds u ;T;n

- dissipative corrections to thermal distributions fh! fot f i

=s 154 ) (v /! %9 f=fo 1+ 22

:I I | T | T 1 | T | T | I I_

30 =
25 =
20 - —
> = .
A5 | p
10 f_ — 1deal hydro _f
- — visc. tlow, f| n

.09 - —— visc. flow, fo+6f_:
.OO I | | | I | | | I | I | | | I | | | L1 1]
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p, (GeV)

Calculation for = const. 15 mb shows similar behaviour
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Viscous hydro vs transport v»

LT T | T 1 | T 1 | T 1 | T 1 | 1T T_]

30 f_ —8— Transp. o = const. _f
o = —& Transp. UOC’TZ//SE_ 2

' — 5—H ]

u = Z

20 /D/ —

> E :
A5 —_
10 =5 —1deal Hydro E

- % N

= — Hydro ox7?3 3

02 C / — Hydro g = constj
OO I | I | | | I | 1| | I | I | | | [

0.0 05 1.0 15 20 25 3.0
p, (GeV)
excellent agreement when = const 47 mb

good agreement fo =s 1=(4 ), ie. [ 273
BUT results sensitive to freeze-out criterion, especially at high pr
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E ect of freeze-out criterion
=s 1=(4 ) («/ %3

.SO IIII|IIII|IIII|IIII|IIII|IIII
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some sensitivity to the freeze-out criterion
not crucial for the results
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Which terms to keep?

— all terms

— like Heinz
—— like Chaudhuri

OO II|III|III|III|III|III

0.0 05 10 15 20 25 3.0
p, (GeV)

Important to keep all terms!
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Conclusions

Prospects for applicability of Israel-Stewart causal hydrodynamics at RHIC
look promising, based on comparisons with covariant 2! 2 transport In
2+1D Bjorken scenaio

Dissipative e ects change both o w and distributions

Dissipation reduces vy(py) by 20 30% for =s = 1=(4 ) and conditions
expected at RHIC

Hydro dynamical results are sensitive to the freeze-out procedure

I being investigated
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